2018 AP ${ }^{\circledR}$ COMPUTER SCIENCE A FREE-RESPONSE QUESTIONS

1. This question involves reasoning about a simulation of a frog hopping in a straight line. The frog attempts to hop to a goal within a specified number of hops. The simulation is encapsulated in the following FrogSimulation class. You will write two of the methods in this class.
```
public class FrogSimulation
{
    /** Distance, in inches, from the starting position to the goal. */
    private int goalDistance;
    /** Maximum number of hops allowed to reach the goal. */
    private int maxHops;
```

 /** Constructs a FrogSimulation where dist is the distance, in inches, from the starting
 * position to the goal, and numHops is the maximum number of hops allowed to reach the goal.
 * Precondition: dist > 0; numHops > 0
 */
 public FrogSimulation(int dist, int numHops)
 \{
 goalDistance = dist;
 maxHops = numHops;
 \}
 /** Returns an integer representing the distance, in inches, to be moved when the frog hops.
*/
private int hopDistance()
\{ /* implementation not shown */ \}
/** Simulates a frog attempting to reach the goal as described in part (a).

* Returns true if the frog successfully reached or passed the goal during the simulation;
* false otherwise.
*/
public boolean simulate()
\{ /* to be implemented in part (a) */ \}
/** Runs num simulations and returns the proportion of simulations in which the frog
* successfully reached or passed the goal.
* Precondition: num > 0
*/
public double runSimulations(int num)
\{ /* to be implemented in part (b) */ \}
\}

2018 AP ${ }^{\circledR}$ COMPUTER SCIENCE A FREE-RESPONSE QUESTIONS

(a) Write the simulate method, which simulates the frog attempting to hop in a straight line to a goal from the frog's starting position of 0 within a maximum number of hops. The method returns true if the frog successfully reached the goal within the maximum number of hops; otherwise, the method returns false.

The FrogSimulation class provides a method called hopDistance that returns an integer representing the distance (positive or negative) to be moved when the frog hops. A positive distance represents a move toward the goal. A negative distance represents a move away from the goal. The returned distance may vary from call to call. Each time the frog hops, its position is adjusted by the value returned by a call to the hopDistance method.
The frog hops until one of the following conditions becomes true:

- The frog has reached or passed the goal.
- The frog has reached a negative position.
- The frog has taken the maximum number of hops without reaching the goal.

The following example shows a declaration of a FrogSimulation object for which the goal distance is 24 inches and the maximum number of hops is 5 . The table shows some possible outcomes of calling the simulate method.

FrogSimulation sim = new FrogSimulation(24, 5);

| | Values returned by
 hopDistance () | Final position
 of frog | Return value of
 sim.simulate () |
| :--- | :---: | :---: | :---: | :---: |
| Example 1 | $5,7,-2, \quad 8,6$ | 24 | true |
| Example 2 | $6,7, \quad 6,6$ | 25 | true |
| Example 3 | $6,-6,31$ | 31 | true |
| Example 4 | $4,2,-8$ | -2 | false |
| Example 5 | $5,4, \quad 2,4,3$ | 18 | false |

```
Class information for this question
public class FrogSimulation
private int goalDistance
private int maxHops
private int hopDistance()
public boolean simulate()
public double runSimulations(int num)
```


2018 AP ${ }^{\circledR}$ COMPUTER SCIENCE A FREE-RESPONSE QUESTIONS

Complete method simulate below. You must use hopDistance appropriately to receive full credit.
/** Simulates a frog attempting to reach the goal as described in part (a).

* Returns true if the frog successfully reached or passed the goal during the simulation;
* false otherwise.
*/
public boolean simulate()

2018 AP ${ }^{\circledR}$ COMPUTER SCIENCE A FREE-RESPONSE QUESTIONS

(b) Write the runSimulations method, which performs a given number of simulations and returns the proportion of simulations in which the frog successfully reached or passed the goal. For example, if the parameter passed to runSimulations is 400 , and 100 of the 400 simulate method calls returned true, then the runsimulations method should return 0.25 .

Complete method runSimulations below. Assume that simulate works as specified, regardless of what you wrote in part (a). You must use simulate appropriately to receive full credit.

```
/** Runs num simulations and returns the proportion of simulations in which the frog
    * successfully reached or passed the goal.
    * Precondition: num > 0
    */
public double runSimulations(int num)
```

